A prime strongly positive amphicheiral knot which is not slice
نویسندگان
چکیده
منابع مشابه
Infinite Order Amphicheiral Knots
In 1977 Gordon [G] asked whether every class of order two in the classical knot concordance group can be represented by an amphicheiral knot. The question remains open although counterexamples in higher dimensions are now known to exist [CM]. This problem is more naturally stated in terms of negative amphicheiral knots, since such knots represent 2–torsion in concordance; that is, if K is negat...
متن کاملThe Dual of a Strongly Prime Ideal
Let R be a commutative integral domain with quotient field K and let P be a nonzero strongly prime ideal of R. We give several characterizations of such ideals. It is shown that (P : P) is a valuation domain with the unique maximal ideal P. We also study when P^{&minus1} is a ring. In fact, it is proved that P^{&minus1} = (P : P) if and only if P is not invertible. Furthermore, if P is invertib...
متن کاملSOME RESULTS ON STRONGLY PRIME SUBMODULES
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. A proper submodule $P$ of $M$ is called strongly prime submodule if $(P + Rx : M)ysubseteq P$ for $x, yin M$, implies that $xin P$ or $yin P$. In this paper, we study more properties of strongly prime submodules. It is shown that a finitely generated $R$-module $M$ is Artinian if and only if $M$ is Noetherian and every st...
متن کاملKnot Groups and Slice Conditions
We introduce the notions of “k-connected-slice” and “π1-slice”, interpolating between “homotopy ribbon” and “slice”. We show that every high-dimensional knot group π is the group of an (n− 1)-connected-slice n-knot for all n ≥ 3. However if π is the group of an n-connected-slice n-knot the augmentation ideal I(π) must have deficiency 1 as a module. If moreover n = 2 and π is finitely generated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Proceedings of the Cambridge Philosophical Society
سال: 1986
ISSN: 0305-0041,1469-8064
DOI: 10.1017/s0305004100066263